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Abstract Functional restoration of arm and hand movements is a challenging goal
of post-stroke/trauma rehabilitation therapy. The post-stroke/trauma conditions often
may lead to partial or total loss of motor function. Therefore, the use of assistive
brain-controlled robotic exoskeleton has recently gained a lot of interest from the
bioengineering research community. In this study, electroencephalography (EEG)
has been used for controlling the exoskeleton and for providing the brain—-machine
interface (BMI) roadmap. The brain signals were recorded corresponding to different
imagined movement by normal subjects using 10-20 standard electrode placement
system. A sample of the EEG recorded at a frequency of at least 160 Hz was pre-
processed to remove the line frequency interference and artifacts. Features were then
extracted from the EEG signal and processed to actuate the exoskeleton, thus ulti-
mately assisting the subject in his/her rehabilitation program. A linear discriminant
analysis (LDA)-based classifier is used to map the extracted features to a specific
task. This study has achieved the best accuracy of 97.101% using linear classi-
fiers and 72.133% using quadratic classifiers. This paper presents system design and
development along with an experimental evaluation of EEG-driven exoskeleton. This
exoskeleton could then be used to assist in the rehabilitation program of stroke/trauma
patients.
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1 Introduction

Hemiparesis or unilateral paresis is one of the most common aftermaths of stroke-
causing weakness of the muscles leading to an abnormal posture, most unpleasant
form causes one side of the body to get paralyzed, movement disabilities, thus
degrading the quality of life of stroke/trauma patients [1, 2]. According to the World
Health Organization (WHO), 15 million people suffer from stroke each year and out
of them, more than 30% are left to lead their lives with permanent disabilities [3].
The initial treatment provided to them is physical therapy so that they can perform
their basic daily life activities. To some extent, physical therapy helps in easing their
lives by enabling them to use wheelchairs, walking on their own, moving upstairs,
etc. But the percentage of post-stroke/trauma patients able to perform these tasks is
quite depressing [4]. With reference to rehabilitation, it has been shown that high
vigor and the repetition of task-specific can improve the motor functionality to a
certain extent. Conventional rehabilitation clinics offer a dose of the repetitive task
which is insufficient to compensate for neural deterioration and prevent or offset
neural decline [5]. This led to a search for new methodologies and techniques that
could provide a more promising solution to these motor disabilities such as robot
assistive devices and electrical stimulation [6].

Robotic devices have been widely used for the purpose of post-stroke/trauma
patients. These robot assistive devices have an edge over the conventional therapy-
based system which was based on long hours of intensive exercises in terms of
accuracy speed and reliability [7]. Some of the drawbacks associated with these
robot-based devices include flexibility, limited communication with the external
environment, acclimation, etc. [7].

A more promising approach to overcome these aforementioned shortcomings was
put forward in the form of exoskeletons which are far more flexible involving the
concept of brain—machine interface (BMI). In this study, an EEG-based exoskeleton
has been proposed. BMI extracts information from the human brain, analyzes those
patterns corresponding to the neural activity of the brain and then provides these
signals as inputs to the machine [8] hence can provide a means for the disabled to
interact with the outside world [7]. EEG is most widely used to measure the brain’s
activity in BMI [9]. The recorded EEG data contains many irrelevant artifacts, so
these recorded signals are first processed, then the relevant features are extracted
and these features are then classified using linear discriminant analysis. The best
accuracy obtained after classification of executed and imagined motion is 97.10 for
subject 5.
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2 Mechatronic Design

The basic necessity for the proper functioning of a hand exoskeleton is the compat-
ibility with the human arm. The movement of the hand is aided by a wrist joint,
elbow joint and shoulder joint. The wrist is a complex junction formed by carpal and
forearm bones. It is capable of some distinct set of movements such as flexion and
extension, supination and pronation, and ulnar deviation and radial deviation [10].
The exoskeleton in the present work was designed to facilitate the wrist extension
and flexion movement along with fingers extension and flexion (see Fig. 1).

The important anthropometric data used for the design is as follows:

Hand length = 185.77 mm, palm length = 105.59 mm, finger length = 59.13 mm
elbow-wrist length = 263.72 mm [11]. To reduce the material cost, the lengths of
the PVC rods of exoskeleton are kept less than the anthropometric data but sufficient
to carry out the required function. The range of torque used for wrist flexion was
8.1-14.5 N.m and wrist extension was 6.0-11.5 N.m [12].

To provide the above-said movements, two revolute joints are provided at the
wrist and finger joint, respectively. The exoskeleton designed and fabricated in the
present work consisted of three main parts, namely elbow support, hand support and
finger support.

2.1 Elbow Support

Two rods (length 180 mm; diameter 16 mm) made up of PVC were used to provide
elbow support (see Fig. 2a). These were arranged in parallel to each other on opposite
sides of the forearm. These rods also supported the servomotors attached to it to carry
out the wrist rotation.

Fig. 1 Shows flexion
movement of wrist and
fingers with or without
exoskeleton a, b, ¢ &
d respectively
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Fig. 2 Shows various parts
of Exoskeleton a Elbow
support, b Hand support,

¢ Finger support,

d Assembled exoskeleton

Table 1 Material Properties
of PVC rods [13]

2.2 Hand Support

B. A. Khan et al.

Properties | Value
Thermal Properties

Thermal Conductivity 0.16 W/mk
Specific heat 1000 J/wk
Co-efficient of thermal expansion 7 x1073/k
Mechanical properties

Elastic tensile modulus 3-3.3 Gpa
Shear modulus 1 Gpa
Bulk modulus 4.7 Gpa
Poisson’s ratio 0.4
Ultimate tensile strength 52 MPa
Relative density 1.42-1.48

Hand support consisted of two parallel rods (length 90 mm; diameter 14 mm)
mounted on the two sides of the hand, from wrist to metacarpal joints (Table 1).
These rods are separately connected to the elbow support rods using a shaft. These
rods form a turning pair with the elbow support in such a way that with the rotation
of servomotor shaft, rods provided the extension-flexion movement to the wrist has

been shown (see Fig. 2b).

2.3 Finger Support

This part was designed to provide the movement of fingers. It consists of two separate
parallel rods (length 59 mm; diameter 11 mm) attached to both the sides of the hand,
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from metacarpal joints to the tip of the fingers (see Fig. 2¢). Hence, the shaft of
servomotor was able to produce the extension-flexion movement to the fingers.

2.4 Fabrication

PVC material was selected due to its lightweight, good wearability, and good insu-
lation properties. Apart from these properties, it remained unaffected by environ-
mental variation. The properties of the material have been shown in Table 2 [13].
The fabricated model of the exoskeleton has been shown (see Fig. 2d).

3 EEG

Electroencephalography (EEG) is a method of recording the brain waves. The
observed signal is usually recorded, processed and used for various purposes, here,
for BMI. Because of its good temporal resolution [14] and noninvasive nature, BCI
operates on an EEG.

Brain activity can be categorized into various frequency bands which are delta,
theta, alpha, beta, gamma and mu. These frequency bands correspond to different
tasks corresponding to their frequencies. Delta (<4 Hz) occurs in adults sleep state,
Theta (4 to7 Hz) occurs during idleness, Alpha (8 to 15 Hz) occurs during the relaxed
state, Beta (16 to 31 Hz) during alert working and busy state and Gamma (>32 Hz)
occurs in somatosensory state [15]. This study particularly focuses on the motor
functions which are almost exclusively found in parts of the primary motor cortex.

Table 2 Percentage accuracy obtained using linear and quadratic classifier for different subjects

S.NO. Subjects Classifier Accuracy (%)
1 S1 Linear 61.333
2 S2 Linear 94.927
3 S3 Linear 93.333
4 S4 Linear 61.594
5 S5 Linear 97.101
6 Combined data (S1,52,53,54,55) Linear 59.200
7 Combined data (S1,52,53,54,55) Quadratic 72.133
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3.1 Data Acquisition

The data used in the paper for research was created by BCI2000 and contributed
by physioNet.org which is made publicly available [16]. The data consists of 109
subjects and was asked to perform motor imagery. Each subject has performed various
tasks and corresponding to each task, 14 EEG recordings of one or two minutes have
been made depending upon the task. The data was recorded by a 64 channel EEG
using 10-20 international system.

Experiment Protocols. Every healthy subject was asked to perform 14 experiments
as: One baseline experiment (one minute) eyes open and another baseline experiment
(one minute) eyes closed.

Task 1—A target appears on either left or right side of the screen and the subject
opens and closes continuously the corresponding fist until the target disappears.
Then, the subject relaxes.

Task 2—A target appears on either left or right side of the screen and the subject
imagines opening and closing of the corresponding fist until the target disappears.
Then, the subject relaxes.

Task 3—A target appears on either top or bottom of the screen and the subject
opens and closes either both his (target on top) or both his feet (target on bottom)
until the target disappear. Then, the subject relaxes.

Task 4—A target appears on either top or bottom of the screen and the subject
imagines opening and closing either both his fist (target on top) or both his feet (target
on bottom) until the target disappear. Then, the subject relaxes.

Each of these tasks is two minutes recorded EEG DATA using 64 channel EEG
placed according to 10-20 international system. These four tasks are repeated various
times so as to make an experimental run of 12 and two one-min baseline experiments.

Subset Experiment Dataset. Five subjects have been chosen out of 109 subjects and
data related to Task-1 and Task-2 of these subjects only have been considered and
worked upon. Essentially the data (executed and imagined) related to opening and
closing of fist has been taken. The new data set thus created includes five subjects
(S001, S002, S003, S004 and S005) and their executed and imagined motion. Now
each subject has a total of 6 experimental runs (3 executed and 3 imagined) of two
minutes each.

4 Channel Selection

Any motor movement even a contraction of a single muscle triggers a change in
brain activity in the cortex [4]. Sensorimotor rhythm (SMR) is brain oscillations
comprising of mu rhythms and beta rhythms. They are located in somatosensory
areas and motor areas. The normal motor output is related to brains cortical areas to
which mu and beta rhythms are linked. SMR or mu, beta rhythms typically decrease
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Fig. 3 Selected channels for Channel locations
the feature extraction

when motor areas are activated [17]. It has been shown that brain activity related
to the motor function of executed movement is almost exclusively contained within
the C3, C4, Cz channels of 64 channel EEG using 10-20 system [14]. The selected
channels lie just above the primary motor cortex of the brain to observe the motor
activity of the subjects properly (Fig. 3).

4.1 Feature Extraction

For the extraction of relevant features from the raw EEG data, certain statistical pa-
rameters are chosen as Interquartile range (IQR), Median absolute deviation (MAD)
and energy (E). IQR is defined as a measure of statistical dispersion, which equals
to the 75th and 25 quartile or upper quartile or lower quartile. MAD is defined as
the median absolute deviation is defined as the variability of a univariate data. In this
way, a total of nine features are selected. Two tasks (each task is repeated three times
per subject) have been assigned to each subject one executed and other one imagined,
so for each subject the size of the feature matrix is (9 x 375) for the executed motion.
Similarly, feature matrix of the same size is for the imagined task.

MAD = median(|X; — median(X)|) (D
N

E = Zxﬂ )
i=1

where,
E = energy of the signal
Xi= ith amplitude of the EEG signal
MAD = median absolute deviation
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Fig. 4 Shows energy plots of EEG data: Fig. 4a & b Shows executed motion and imagined motion
energy plot across the channels (C3, C4, Cz) respectively. Figure 4c & d Shows classified executed
and imagined data at channel C3 and C4 respectively

Feature extraction is carried out as follows—first, the windowing signal for each
second is done and the number of samples per second is 160. After that, features
are extracted for each window using statistical parameters and are stored in a
feature matrix of maximum size (9*375). This is repeated for each subject. Finally,
the extracted features are classified into executed and imagined using LDA-based
classifier. The extracted data energy plots are shown below (see Fig. 4).

The first two plots correspond to the extracted energy feature of executed and imag-
ined motion across the selected channels (C3, C4 and Cz), respectively (see Fig. 4a
& b). Then, the particular channel is chosen and the extracted data corresponding to
Executed and imagined motion has been plotted (see Fig. 4c & d).

5 Results and Discussion

Table 2 shows accuracies corresponding to different subjects which are obtained by
using three features (IQR, MAD and energy). Linear and quadratic classifiers are used
for classification. S5 provides the best accuracy for the classification and it can be
observed from the plots that the classified data and the imagined data are distinctive
in the time domain (see Fig. 4c and d). For the combined dataset, the accuracy has
been improved by using quadratic classifier and can be further improved by using
deep learning tools.
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6 Conclusion

In this research, a simple and efficient exoskeleton has been developed. The
lightweight and good wearability of the fabricated exoskeleton further make it
ergonomically effective. Categorization between the imagined and executed motion
has been performed with sufficiently good accuracies, by using an LDA-based
simple classification. More improvement in the accuracies can be achieved by using
classifiers based on deep learning. It offers a promising and potential roadmap to
BCI.
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